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LETIER TO THE EDITOR 

Macroscopic shape of critical droplets in first-order 
wetting transitions 

M A Burschka, R Blossey and R Bausch 
Institut fw Theoretische Physk N der Heinrich-HeinaUniversit~i Dirsseldorf, 
UnivenititstraDe I, 4022.5 Dkseldorf 1, Federal Republic of Germany 

Received 12 July 1993 

Abslmct In a first-order wetting transition the decay of a metastable non-wet state occurs 
by nucleation and growth of supercritical droplets on the wall of the system. Based on an 
effective interface model for the wetting fluid the shape of the critical droplet is calculated 
outside a microscopic region near the wall for a class of long-range interface potentials. 
T’he solution has a surprisingly simple form if the dimension of the system coincides with 
the boundary dimension between the so-called strong and weak fluctuation re&es. 

When a finite amount of liquid is brought into contact with a solid wall the liquid 
forms a drop under the action of the surface tensions between the vapour, liquid and 
solid phases. The calculation of the droplet shape in thermal equilibrium is an old 
problem considered already by Laplace [I]. More recently, the proNe of droplets on a 
wall has hem derived by different techniques including phenomenological methods [Z], 
Monte Carlo simulations [3], random walks [4] and methods using conformal invari- 
ance [5]. 

Droplets on a wall may also appear as critical droplets in the metastable region of 
a first-order wetting transition. Such a transition occurs at bulk coexistence of two 
fluids in the presence of a wall which prefers one of the fluid phases [6]. Below the 
transition temperature T, the wall is in a non-wet state whereas above T, it is covered 
by a macroscopic wetting layer. If the system is overheated from below to above T, the 
non-wet state becomes metastable and decays via nucleation and growth of supercritical 
droplets on the wall. As in homogeneous nucleation in the b u k  the critical droplet 
plays an essential role in the nucleation process determining, for example, the lifetime .. 
of the metastable state 171. 

The critical droplet in first-order wetting transitions can be determined [SI from the 
effective interface Hamiltonian [9] 

where f ( x )  is the local thickness of the fluid covering the wall. The first term in H 
derives from the capillary energy of the interface between the two fluids with y being 
its surface tension. V(f) is an effective potential of the form shown in figure 1, where 
the repulsive core simulates the wall and the two minima atf=& andf= CO represent 
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Figure 1. The interface potential V ( / )  with a metastable minimum at/=fo and a stable 
oneal/=m,showofortheexample V(/)=Af'-"-B/-~+Cf-'-"[9] with u=3. 

the non-wet and the wet states of the wall. By variation of temperature the relative 
height of the two minima can be changed and in a mean-field description the transition 
occurs at equal height of the minima. 

Figure 1 describes the situation at some temperature T> T, where the non-wet state 
of the wall is metastable. Then, under the assumption of rotational symmetry around 
the normal of the wall the profile of the critical droplet follows from the equation 
6 H / 6 f ( r )  =0, i.e. 

with the boundary conditionsf(r=O) = O , f ( r =  00) =& [SI. A standard procedure [lo] 
to solve this equation is to consider it as an equation of motion for a fictitious classical 
particle with 'position' f at 'time' I which moves under the influence of a potential 
- V(f) and a 'time'-dependent friction term. The boundary conditions then mean that 
the particle starts with zero velocity at a positionf(r=O)=fi which needs to be deter- 
mined such that for r-rm the particle comes to rest atf=fo. Thusfi is the maximum 
value of the particle trajectory and'corresponds to the centre height of the critical 
droplet. Figure 2 shows the droplet profile in d=3  for the potential shown in figure 1. 
It is convex up to a turning point and then approaches the valuef=& in a smooth 
way. 

From figure I and the mechanical analogy described above it follows that the droplet 
becomes large close to the wetting point T, where the Merence between the two 
minima of V(f) measured by the spreading coefficient S- V(&) - V(m) [61 vanishes. 
Thenfi moves out to larger values off, which is most easily seen in d= 2, where energy 
conservation for the motion of the fictitious classical particle enforces V(fo)= V(fi). 
The effect is qualitatively the same for d z 2 ,  since thenfid'Z)>f!d-2) [SI. On the other 
hand the turning point in the droplet profile in the limit S-rO is given by the position 
of the local maximum of V(f) atf=fi in figure 1. Consequently, with S-rO we have 

& / f i - + O  and the non-convex part of the droplet profile is localized in a microscopic 
regime near the wall. Therefore the macroscopic droplet shape does not depend on the 
local structure of V(f) near the wall but only on the asymptotic part of V(f) for 
f-m. For this part we assume V ( f ) = A f ' - "  with a Hamaker constant A and an 
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Figure 2. The profile of the critical droplet at d = 3  for the potential shown in figure 1. 

exponent a> 1 which derives from the molecular interactions of the form 
W(r) - r-'d+ =) [6] .  Thus for the macroscopic critical droplet, equation (2) can be 
replaced by 

d-2 (1 - 4 &.-" f " ( r )  + - f ' ( r )  = - 
r Y 

(3) 

with new boundary conditions 

f'(0) =O f(R) = 0. (4) 

The latter condition means that the macroscopic droplet profile has been extrapolated 
down to f= 0. The corresponding value r ( f =  0) = R defines the critical radius of the 
droplet. 

At d = 2  the friction term in (3) vanishes and energy conservation for the fictitious 
particle yields a first integral for our problem. The second integration can be performed 
analytically for a=3 and yields an elliptical droplet profile (see below). For d>2 we 
use the fact that the differential equation (3) is of a generalized homogeneous form. 
With the standard transformation [ 1 I] 

r =  R exp f(r) =exp(25/(a+ 1))7(5) (5) 

equation (3) changes into the differential equation 

where do(a) = ( 3 ~ -  l)/(a+ 1). The boundary conditions (4) transform into 
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The friction term in (6) now vanishes at d=do(u) leading to the equation 

This has the fmt integral 

where the boundary conditions (7) have been used an- :he fact that a finite v i - e  of 
f ( 0 )  requires q(-m)= 00. Separation of variables leads to the second integral 

which can be performed exactly for all values of ts. In terms of the old variables (5) 
we finally obtain 

for the droplet profile where F - [ A p ( u +  1)2/(8y)]'/(u+') is the central height of the 
droplet. We mention that close to the wetting transition point the droplet height and 
radius diverge according to F-XZnu+'), R-SI  [12]. Equation (11) explicitly shows 
how the macroscopic shape of the droplet depends on the range of molecular inter- 
actions via the exponent U and that for u=3 the droplet has exactly the shape of an 
ellipsoid, as stated before. 

The simple expression (1 I )  for the droplet prolile is valid only in dimension d= 
do(u) which is just the boundary dimension between the weak and strong fluctuation 
regimes for wetting, and has also been conjectured to  be^ the lower critical dimension 
for first-order wetting transitions 1131. More recent renormalization group studies, 
however, seem to allow the existence of first-order wetting transitions below &(U) in 
some range of U [14]. 

Finally, for the case of short-range forces V(f) = A  exp-pf [9]  the substitutions 
r = R exp 5, Pf(r) = 25 + q ( 5 )  transform the droplet equation into 7'' + 
(d-3)q '+2(d-3)=-(AR2p2/y)exp(-q) .  At d=d0(oo)=3 this again can be solved 
by quadrature, however, with no simple analytical result for the droplet profile. 

This work has been supported by the Deutsche Forschungsmeinschaft under SFB 237 
(Unordnung und grolle Fluktuationen). 
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